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Abstract

The global decline of water quality in rivers and streams has resulted in a pressing need

to design new watershed management strategies. Water quality can be affected by mul-

tiple stressors including population growth, land use change, global warming, and

extreme events, with repercussions on human and ecosystem health. A scientific under-

standing of factors affecting riverine water quality and predictions at local to regional

scales, and at sub-daily to decadal timescales are needed for optimal management of

watersheds and river basins. Here, we discuss how machine learning (ML) can enable

development of more accurate, computationally tractable, and scalable models for analy-

sis and predictions of river water quality. We review relevant state-of-the art applications

of ML for water quality models and discuss opportunities to improve the use of ML with

emerging computational and mathematical methods for model selection, hyperparameter

optimization, incorporating process knowledge into ML models, improving explainablity,

uncertainty quantification, and model-data integration. We then present considerations

for using ML to address water quality problems given their scale and complexity, avail-

able data and computational resources, and stakeholder needs. When combined with

decades of process understanding, interdisciplinary advances in knowledge-guided ML,

information theory, data integration, and analytics can help address fundamental science

questions and enable decision-relevant predictions of riverine water quality.
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1 | INTRODUCTION

Water quality refers to physical, chemical, and biological characteris-

tics of water bodies. Water quality is an important aspect of our

ability to use rivers and streams for drinking water, healthy aquatic

ecosystems, farmland irrigation, and other beneficial purposes. River

water quality has been declining globally over the past century due to

population growth and increasing urbanization, industrialization, and
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agriculture (Abbott et al., 2019). These stressors have led to saliniza-

tion and alkalinization of rivers (Kaushal et al., 2013, 2021), nutrient

runoff causing algal blooms and eutrophication (Hartmann

et al., 2014; McDowell et al., 2020), and river contamination from per-

sistent organic compounds, pesticides, and toxic metals

(Schwarzenbach et al., 2010). Climate change and extreme events

such as floods, droughts, and wildfires are projected to exacerbate

problems of water quality by decreasing flows, changing biogeochemi-

cal cycles, and increasing contaminant concentrations (Lyubimova

et al., 2016; Murdoch et al., 2000; Nilsson & Renofalt, 2008;

Whitehead et al., 2009). The deterioration of river water quality has

direct consequences for aquatic and human health. The costs of

watershed management to comply with water quality regulatory

criteria are significant, even when the benefits are uncertain (Keiser

et al., 2019). Thus, water resource managers rely on monitoring and

simulations of hydrological processes to make optimal decisions, and

are helped by models that account for complex biogeochemical pro-

cesses and their climactic, hydrological and human drivers.

Different classes of water quality models can be used for predic-

tions depending on the relevant water quality variables, spatial scales

(e.g., reach, watershed, regional), and complexity (Rode et al., 2010),

some of which are described in recent reviews (Burigato Costa

et al., 2019; Fu et al., 2020). High-fidelity mechanistic models can

incorporate the tight coupling of physical and biogeochemical pro-

cesses such as climatic variations, hydrologic fluxes, weathering, and

biological interactions on solute transport and mixing at pore to sub-

catchment scales. For example, integrated surface-subsurface hydro-

logic models (e.g., Amanzi/ATS) coupled with reactive transport

models (RTMs) can attain spatially explicit representations of critical

zone components, and provide accurate estimates of geochemical

exports to rivers at reach to hillslope scales (Arora, Spycher,

et al., 2016; Dwivedi et al., 2018; Steefel et al., 2015; Xu et al., 2021).

Despite the demonstrated success of these models, they face impor-

tant challenges at larger spatial domains in part due to the computa-

tional expense from having highly resolved spatial grids and complex

biogeochemical processes needed to represent heterogeneous water-

shed characteristics influencing water quality (Steefel, 2019). Capabili-

ties for upscaling current RTMs and representation of geochemistry in

larger scales are in their early stages of development (Arora

et al., 2015; Jan et al., 2021; Li et al., 2021).

At watershed- to basin-scales, models such as the semi-empirical

soil and water assessment tool (SWAT; Arnold et al., 1998) and hydro-

logic simulation program Fortran (e.g., HSPF; Bicknell et al., 1996)

have been widely used for surface water quality modelling (Fu

et al., 2019). The models contain elements called hydrologic response

units (HRUs) that are non-continuous areas within a sub-basin

grouped by similar properties such as land use, soil, or topography

based on user-defined thresholds (Chen, Xu, et al., 2019; Her

et al., 2015). This discretization approach makes the models computa-

tionally efficient but introduces limitations such as the lack of hydro-

logic connectivity between the HRUs and sensitivity of the models to

the HRU definitions, although some of these limitations are addressed

in newer versions of the code (e.g., SWAT+; Bieger et al., 2017; Her

et al., 2015; Paul et al., 2019). The models also require watershed-

specific calibration and validation, and the parameters can have sub-

stantial uncertainties due to equifinal solutions (Van Liew et al., 2003;

White & Chaubey, 2007; Xie & Lian, 2013).

Most regional- to continental- scale process-based models that do

capture geochemistry (e.g., WITCH; Roelandt et al., 2010) are zero-

dimensional box-models, which are not adequate for representing com-

plex flow and chemical transport dynamics (Li et al., 2017). Process-

based models have been used to predict physical variables such as

stream temperature (e.g., MOSART-heat, PRMS-SNTemp, VIC-RBM; Li

et al., 2015; Sanders et al., 2017; van Vliet et al., 2012) at these spatial

scales by incorporating thermodynamics and energy balance into terres-

trial hydrology models. Alternatively, statistical models are also used for

regional- to continental-scale predictions of water quality, although

these have other significant limitations. For example, the SPARROW

model (Schwarz et al., 2006) has been widely used for spatial water

quality predictions at regional scales in the United States (U.S.) but

assumes long-term steady-state behaviour, and efforts to incorporate

temporal dynamics are nascent (Chanat & Yang, 2018). Multi-linear

regression and auto-regressive integrated moving averages (ARIMA) are

commonly used methods for temporal predictions of water quality vari-

ables but have limited applicability in complex systems with non-linear

and non-stationary processes (Chen et al., 2020).

Apart from predictions, numerous studies have used statistical

regression to analyse water quality trends and attribute drivers at local

to continental scales (e.g., Guo et al., 2019; Kaushal et al., 2018;

Monteith et al., 2007; Murphy, 2020; Murphy & Sprague, 2019). Gen-

eralized additive models that extend linear models are another statisti-

cal approach used to determine water quality trends (e.g., Morton &

Henderson, 2008; Yang & Moyer, 2020) and can be adapted to large

datasets (Wood et al., 2015). Another common statistical technique is

correlation analysis between riverine chemical concentrations and dis-

charge (typically referred to as C-Q relationships), which has been used

for a variety of purposes such as examining constituent dynamics at

short and long time-scales (e.g., Arora et al., 2020; Evans &

Davies, 1998; Godsey et al., 2009; Moatar et al., 2017; Musolff

et al., 2021), identifying sources and pathways of different solutes (see

Musolff et al., 2021 and references therein), and analysing water qual-

ity monitoring data for watershed management (Bieroza et al., 2018;

Pohle et al., 2021; Westphal et al., 2020). However, complex C-Q pat-

terns, such as those resulting from variable lags between the hydro-

graph and chemograph, are difficult to interpret and attempts to link

insights gained from C-Q analysis to models have been limited (Liu,

Birgand, et al., 2021). Other statistical approaches such as Bayesian

hierarchical models (Guo et al., 2019; Rode et al., 2010), wavelets

(Arora, Dwivedi, et al., 2016; Parmar & Bhardwaj, 2013), and principal

component analysis and non-negative matrix factorization (Liu, Zhang,

et al., 2021; Shaughnessy et al., 2021) are used to identify key catch-

ment attributes, sources, and ecosystem control points (Bernhardt

et al., 2017) that influence stream water chemistry.

Despite the variety of statistical and modelling approaches avail-

able, it is still challenging to make accurate and timely water quality

predictions, particularly at large spatial scales, due to the variability of
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water quality with space, time, and disturbance (natural or human),

and the effect of local characteristics and complex processes on solute

transport. There is consensus that water quality modelling has plat-

eaued, with recent studies focusing on incremental improvements to

existing models and case study demonstrations for individual basins

rather than transformational advances that address the challenges

involved (Fu et al., 2020). The field is fragmented, with the choice of

model varying substantially depending on the spatial scale and param-

eters being modelled, as well as access to computation and modelling

expertise (Fu et al., 2020), limiting our ability to make decision-

relevant predictions.

Recent advances in machine learning (ML) and artificial intelli-

gence (AI) spurred by the increasing availability of public datasets,

development of software frameworks, and cloud computing resources

have the potential to stimulate a new class of water quality models

that can be run at decision-relevant scales, resolutions, and lead times.

Artificial intelligence encompasses technologies that can understand

inputs from the environment, reason and take actions to meet a per-

formance objective, while ML (the focus of this paper) is a subset of

AI that focuses on learning patterns from complex data (Russell &

Norvig, 2020). Thus ML is useful for problems that require predic-

tions, deriving insights from data, and decision making (Jordan &

Mitchell, 2015). ML applications for geosciences broadly span model-

ling, automation tasks and data-driven discovery, and include

approaches such as classification, spatial or temporal regression, and

anomaly detection (Bergen et al., 2019; Reichstein et al., 2019). ML

methods include supervised learning, wherein known observations are

used to train a model to learn patterns or make predictions on a target

variable; unsupervised learning, wherein the algorithm learns patterns

or structures in the data heuristically without apriori knowledge of the

target; and reinforcement learning, wherein the model learns to make

decisions under uncertainty through trial and error interactions with

its environment to maximize a reward (see Shen, 2018; Bergen

et al., 2019; Xu & Liang, 2021 and references therein for an overview

of ML in hydrology and geosciences). Traditional ML methods (also

referred to as classical or conventional ML) include support vector

machines (SVM), decision trees such as random forests (RF) and gradi-

ent boosted trees, and simple artificial neural networks (ANN;

e.g., feed forward ANN, extreme learning machines, multi-layer per-

ceptron). Deep learning (DL) models are neural networks (NN) with

multiple processing layers that make it possible to learn complex pat-

terns from large datasets and have high predictive skill. Common DL

architectures include the convolutional neural network (CNN), recur-

rent neural networks (RNN) of which the long short term memory

(LSTM) network is a popular choice, deep belief networks (DBN) that

are composed of restricted Boltzmann machines (RBM), and sparse

autoencoders (LeCun et al., 2015; Shen, 2018; Shrestha &

Mahmood, 2019). In this paper, we use the term “machine learning”
to refer to both traditional ML and DL models.

Over the past decade, there has been a large increase in the use of

ML for hydrological predictions (Xu & Liang, 2021) to the point where its

adoption in future physical hydrology models seems inevitable (Nearing,

Kratzert, et al., 2021). A wide variety of ML approaches have been

explored for water quality modelling in rivers across the world, and col-

lectively indicate their potential to extract scientific knowledge and

enable optimal management of water quality (Section 2). Yet the rapidly

increasing use of ML raises several questions. First, given the diversity of

modelling approaches, what are the situations where ML can add value

and what are its limitations? What are the primary considerations for

model and feature selection? How do we compare performance and

evaluate whether models have been constructed and parameterized

appropriately? How can ML approaches complement process-based

models to improve our prediction capabilities? And most importantly,

how can we trust and use models that make predictions based on

machine-derived information that is beyond human comprehension?

In this paper, we discuss the potential for using ML in water quality

modelling for decision-relevant predictions. We first provide a brief

review of ML methods used for several water quality applications that

demonstrate its value for modelling and knowledge discovery

(Section 2). We then present opportunities for advancement of ML

model architectures, transferability, and interpretability, which includes

the integration of process knowledge into model design (Section 3). We

finally present considerations for the choice of model based on the

scale and complexity of the problem being addressed, and availability of

data and computational power (Section 4). We posit that the time is

ripe for judiciously incorporating ML into riverine water quality models

for the purposes of improving predictive capabilities and deciphering

the complex, diverse human-natural processes that affect water quality.

Throughout, we use the term “models” to refer to codes that both gen-

erate predictions and analyse data to extract information.

2 | STATE-OF-THE-ART MACHINE
LEARNING IN RIVER WATER QUALITY
MODELS

Machine learning models have been used for predictions of many

water quality variables using various approaches from simple models

to hybrid methods combining ML with process-based models

(Table 1). Stream temperature is a widely measured physical water

quality variable and has been successfully predicted using different

ML methods. For example, classical ML methods have been used for

monthly to daily predictions of stream temperatures in catchments

with different characteristics, and include support vector regression

(SVR; Rehana, 2019; Weierbach et al., 2022); decision tree-based

regression models such as RF, XGBoost, and their variations (Feigl

et al., 2021; Lu & Ma, 2020; Weierbach et al., 2022); and simple ANNs

(Feigl et al., 2021; Zhu & Piotrowski, 2020). Among DL models, the

LSTM deep neural network has become an increasingly popular choice

for regional-scale hydrological predictions due to its ability to encode

prior system states in the cell memory (e.g., Kratzert et al., 2018). For

example, Rahmani, Lawson, et al. (2021) originally used an LSTM net-

work to predict daily stream temperatures for 118 pristine catchments

in the continental U.S. and in a subsequent study extended the LSTM

approach to make predictions in data-sparse, unmonitored and

dammed catchments (Rahmani, Shen, et al., 2021). Approaches that

VARADHARAJAN ET AL. 3 of 22
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combine process-based models with DL have also been used for

basin-scale stream temperature predictions, particularly in regions

with sparse data (e.g., Jia, Zwart et al., 2021, Section 3.2). In all cases,

the ML approaches were able to improve prediction accuracies com-

pared to base statistical and process-based models.

ML models have also been used for predictions of other water

quality variables and indices such as dissolved oxygen (DO), electrical

conductivity, total dissolved solids (TDS), pH, nutrients, suspended

sediments and turbidity, cations, anions, biological oxygen demand

(BOD), chemical oxygen demand (COD), and chlorophyll. Recent

TABLE 1 Examples of water quality applications where machine learning has been applied

Application

Stream water quality

variables

Classical ML (single

or ensemble) Deep learning Hybrid process + ML

Unsupervised

learning

Time-series predictions Temperature, DO,

conductivity,

nutrients, pH,

turbidity, cations,

anions, dissolved

organic matter,

BOD, COD,

chlorophyll-a

SVR; decision trees,

ANN, GP, fuzzy

logic, ensembles

(Chen et al., 2020;

Feigl et al., 2021;

Khullar &

Singh, 2020;

Rajaee et al., 2020;

Rehana, 2019;

Weierbach

et al., 2022; Zhu &

Piotrowski, 2020)

LSTM (Rahmani,

Lawson,

et al., 2021; Zhi

et al., 2021);

LSTM+CNN (Baek

et al., 2020), DBN

(Solanki

et al., 2015; Yan

et al., 2020)

LSTM and graph RNN

combined with

stream

temperature

process model (Jia,

Zwart, et al., 2021);

ANN + salinity

process model

(Hunter

et al., 2018)

Predictions in ungaged

basins

Temperature XGBoost, SVR

(Weierbach

et al., 2022)

LSTM (Rahmani,

Shen, et al., 2021)

Short-term predictions,

surrogates for

monitoring and

detection

Temperature, DO,

pH, conductivity,

turbidity, nutrients,

water quality

indices

SVM, RF, ANN,

ensembles (Bui

et al., 2020; Green

et al., 2021;

Harrison

et al., 2021; Lu &

Ma, 2020; Paepae

et al., 2021)

LSTM (Liu

et al., 2019)

Dynamic time

warping

clustering (Lee

et al., 2020)

Event dynamics and

classification

Suspended sediments Restricted Boltzman

machines, Bayesian

belief networks

(Hamshaw

et al., 2018, 2019;

Murray et al., 2012)

CNN (Hamshaw

et al., 2019)

Multivariate event

time series

clustering (Javed

et al., 2021)

Process understanding

and knowledge

discovery

Temperature, pH,

TDS, conductivity

cations, anions,

nutrients,

Escherichia coli

Decision trees, NN

(�Alvarez-Cabria

et al., 2016;

Mirzaei

et al., 2020; Povak

et al., 2014; Wang

et al., 2021)

Remote sensing

estimates

Suspended and other

sediments,

turbidity, DO,

metals, nutrients,

chlorophyll-a,

organic matter,

blue-green algae

ANN, SVM, GP,

decision trees

(Topp et al., 2020)

Progressively deep

NN (Peterson

et al., 2020)

Decision support and

management

scenarios

Conductivity, pH,

DO, nutrients,

suspended

sediments, anions,

chlorophyll

Bayesian networks/

probabilistic graph

models (Forio

et al., 2015; Mount

& Stott, 2008;

Phan et al., 2019)

Note: See references for further details on techniques used for specific water quality variables.
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reviews identify popular classical ML methods for time-series predic-

tions including ANN, decision trees, SVM, genetic programming (GP),

fuzzy logic, and hybrid approaches such as genetic algorithm-NN,

adaptive neuro-fuzzy inference systems, and wavelet-NN (Chen

et al., 2020; Khullar & Singh, 2020; Rajaee et al., 2020). Hybrid models

with ensembles of standalone ML models using methods such as bag-

ging and random subspace (Melesse et al., 2020) or combining ML

with process-based models (Hunter et al., 2018) have been used to

predict salinity at river basin- to reach-scales in Iran and Australia.

Examples of recent efforts to incorporate DL approaches for these

predictions include the use of an LSTM to predict DO concentrations

in 506 pristine U.S. catchments achieving moderate accuracy (Zhi

et al., 2021), and an LSTM paired with a CNN (that generated

streamflow estimates) to predict total nitrogen, phosphorus, and

organic carbon in a major Korean river basin (Baek et al., 2020). LSTM,

RF, and hybrid ML models have also been used for short-term predic-

tions of a suite of water quality variables (e.g., DO, pH, conductivity,

turbidity, nutrients, water quality indices) with high-frequency moni-

toring; in some cases classical ML surrogate models are used as soft

sensors to make predictions of variables that are difficult or laborious

to measure directly such as those that require laboratory sample anal-

ysis (Bui et al., 2020; Green et al., 2021; Harrison et al., 2021; Liu

et al., 2019; Lu & Ma, 2020; Paepae et al., 2021).

In addition to predictions, ML approaches are used to discover

understanding about the dynamics of water quality and underlying

sources, drivers, and mechanisms. A common use of ML is to detect

events of interest from high-frequency data obtained from sensor

networks. For example, insights into episodic sediment dynamics from

hundreds of storm events were derived using RBMs and CNNs to

automate analysis of C-Q plots (Hamshaw et al., 2018, 2019). Classifi-

cation and clustering pattern recognition techniques have been used

to identify similarities between monitoring stations (Lee et al., 2020),

hydrological events (Javed et al., 2021), and contaminant sources

(Vesselinov et al., 2018). Classical ML methods such as decision tress,

NN, and self-organizing maps have been used to identify landscape

attributes and human factors that affect stream water quality

(�Alvarez-Cabria et al., 2016; Mirzaei et al., 2020; Wang et al., 2021),

and characterize relevant processes such as cation weathering rates

(Povak et al., 2014).

Another application area is the use of ML for analysis and estima-

tion of inland water quality parameters obtained from remote sensing

imagery. The estimates are most commonly derived using classical ML

approaches, but are limited to larger rivers and a few variables due to

the spatial resolution of land surface sensors (�10–30 m), and broad

spectral bands (Hassan & Woo, 2021; Hestir et al., 2015; Topp

et al., 2020). Peterson et al. (2020) demonstrated that a progressively

deep NN model outperformed SVR, extreme learning machine, and

multi-linear regression in estimating water quality parameters such as

blue-green algae, chlorophyll-a, fluorescent dissolved organic matter

(FDOM), DO, conductance, and turbidity in the Upper Mississippi

River using data from Landsat-8 and Sentinel-2. A harmful algal bloom

(HAB) detection system HABNet (Hill et al., 2020) for coastal waters

used a CNN combined with an LSTM, SVM, or RF applied on data

from moderate resolution imaging spectroradiometer (MODIS) data.

Remote sensing datasets relevant to river water quality are likely to

grow in the future with newer high-resolution satellites, instruments

with hyperspectral bands, and increasing use of unmanned autono-

mous vehicles (UAV) to acquire water quality data (Sibanda

et al., 2021; Topp et al., 2020), and can potentially address data gaps

for water quality ML (Section 4.4).

Finally, probabilistic graph models such as Bayesian networks

have been used extensively for decision support in water manage-

ment (Phan et al., 2019). Bayesian networks can integrate both quan-

titative data (e.g., time-series of measured concentrations and

discharge), and qualitative data (e.g., expert knowledge and stake-

holder beliefs), and can generate probabilistic predictions for different

management and climate scenarios. For example, Bayesian networks

were used to design rules for trading transferable pollutant discharge

permits in rivers (Mesbah et al., 2009), for real-time monitoring and

contaminant warning systems (Murray et al., 2012), and to predict

water quality in different types of catchments (Forio et al., 2015;

Mount & Stott, 2008).

These examples illustrate the value of using ML for a variety of

global river water quality modelling and monitoring applications. The

use of DL and hybrid models combining ML and process-based codes

is still nascent and is expected to grow in the near future. In the next

two sections, we describe how the appropriate use of ML for different

water quality applications can best incorporate recent computational

and mathematical developments due to the large number of variables

of interest, heterogeneity of human and natural processes that influ-

ence water quality, and scarcity of available data.

3 | OPPORTUNITIES FOR ADVANCEMENT
OF WATER QUALITY ML

ML methods have advanced rapidly over the past decade, and diverse

approaches can be used to improve model performance, efficiency,

and robustness. Here we highlight particularly promising techniques,

many of which have been used in hydrological applications, to address

questions raised in Section 1 related to the use of ML for water qual-

ity modelling (also see Varadharajan et al., 2021).

3.1 | How do we select and design optimal model
architectures?

ML model selection and architectures (e.g., number of layers, batch

size, nodes for neural networks) can affect model performance and

computational costs. The choice of the best performing model (ML,

statistical, or process-based) will depend on the metrics considered

including model accuracy, variance, robustness, bias, and computa-

tional speed (Belitz & Stackelberg, 2021; Kratzert, Klotz, Shalev,

et al., 2019). A common approach for model selection in many of the

studies cited above (Section 2) is to train different model types, and

choose the model with the greatest predictive skill. Another approach

VARADHARAJAN ET AL. 5 of 22
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to model selection is to not choose, i.e., to create model ensembles

that exploit the diversity of predictive skill from different models.

Model ensemble approaches are common in hydrology (Fleming

et al., 2021). Specifically, ML ensembles have shown promise in

improving predictions (e.g., flood forecasting), quantifying uncertainty

(Fleming et al., 2015; Jiang et al., 2014; Zounemat-Kermani et al.,

2021), and are now being incorporated into operational models

(Fleming et al., 2015, 2021). Ensembles can be formulated in many

ways, from traditional methods such as bagging, boosting, dagging,

model averaging, and stacking to more sophisticated combinations

such as running simulations on different classes of models or pre-

training ML models on different process models (e.g., Section 4.2).

Ensemble combinations of multiple models can be even more benefi-

cial when the errors of individuals models are not correlated

(Hsieh, 2009).

Besides model selection, other important choices in the applica-

tion of ML are selection of optimal input features, model training, and

architecture design. In regression and classification, a best practice is

to use k-fold cross-validation that partitions available data into k-sets

and iteratively trains the model using data from each set for testing,

which leads to better model generalizability (Bergmeir &

Benítez, 2012). Common pitfalls in model design are including excess

irrelevant or redundant variables as inputs, variable selection bias

(i.e., using the same data for training and inputs), resubstitution valida-

tion (i.e., testing the model with training data), use of inconsistent

cross-validation and resampling procedures across model architec-

tures being implemented, and data leakage (e.g., using testing data for

model training or hyperparameter optimization, or pre-processing the

entire dataset prior to splitting the data into cross-validation folds),

which can lead to overfitting (Gharib & Davies, 2021; Zhang, 2007).

These pitfalls can be avoided by understanding the details and limita-

tions of the models being implemented, following best practices, and

using robust ML workflows (Gharib & Davies, 2021; Zhang, 2007).

Different hyperparameter optimization (HPO) methods have been

developed to find the best-performing ML model architectures (Yu &

Zhu, 2020). In many applications such as those cited above, the hyper-

parameters are either not chosen (i.e., default hyperparameters

selected), hand-tuned (trial and error of different architectures), or

selected using a grid or random search approach (Bergstra

et al., 2011). In a few models (e.g., RF), default hyperparameters can

work well (Probst et al., 2019); however, in general HPO is expected

to improve model performance. Although random search has been

shown to outperform grid search (Bergstra & Bengio, 2012), both

approaches require a time-consuming approach of training each archi-

tecture, which can be computationally expensive, result in inferior

performance, and limit the number of architectures that can realisti-

cally be explored. Instead, efficient solution methods using Bayesian

optimization methods such as the Tree-of-Parzen-Estimators in the

Python package Hyperopt can be applied (Bergstra et al., 2013).

Müller et al. (2020) demonstrate another derivative-free Bayesian

optimization method using surrogate models, such as Gaussian pro-

cess or radial basis functions, to map the architecture search space to

its performance and allows efficient exploration of the space by

adaptive sampling approaches. Near-optimal hyperparameters for dif-

ferent NN including DL architectures can be found with relatively few

evaluations using this approach (e.g., Figure 1).

Automated machine learning (AutoML) frameworks that use con-

cepts of ensembles and automatic HPO are emerging as a promising

approach for reducing the barrier to adoption of ML, and have shown

improvements in the efficiency and robustness of ML algorithms

(Feurer et al., 2015; Hutter et al., 2019). A forward-looking automated

ML approach for model design is “neural architecture search” (Ren

et al., 2021) where algorithms automatically design model architec-

ture. This approach has been successfully applied to algal classification

using CNNs (Park et al., 2019) and spatiotemporal predictions (Li

et al., 2020), and is even being considered for physics-based learning

models (Ba et al., 2019).

3.2 | How do we incorporate scientific knowledge
into ML models?

Traditional ML models can produce physically inconsistent results

(Karpatne et al., 2017; Kashinath et al., 2021) as they only look for

statistical relationships in the training data and are unable to extrapo-

late outside of the training dataset used for building the ML model.

The sparseness of water quality and related environmental datasets,

and projected changes in climate and land use make it challenging to

use ML models per se for predictions in unmonitored regions or for

long-term projections because they can only be trained, validated, and

evaluated on past data (Duan et al., 2020; Kratzert, Klotz,

Brandstetter, et al., 2019; Xu & Liang, 2021).

The scientific community has been converging on the use of

knowledge-guided ML (KGML; see Figure 2 as an example) to make

physically consistent and generalizable predictions (including out-of-

bounds estimates) and decrease training times (Kashinath

et al., 2021). KGML approaches have been used to incorporate scien-

tific knowledge into ML model training and predictions in several

ways (Willard et al., 2022) that include (i) modification of loss func-

tions to penalize the model when violating known physical laws and

relationships (Jia et al., 2019; Karpatne et al., 2018), (ii) training or

pre-training ML models on process-based model output (Konapala

et al., 2020; Read et al., 2017), (iii) incorporating differential equations

in ML models (Chen, Rubanova, et al., 2019; He et al., 2020;

Rackauckas et al., 2020), (iv) multi-task learning for multi-objective

optimization (Sadler et al., 2022), (v) modifying ML model architecture

to impose symmetry or better represent the system being modelled

(Daw et al., 2020; Khandelwal et al., 2020; Kunin et al., 2021; Ling

et al., 2016), and (vi) most commonly surrogate (or reduced-order)

models that emulate process model behaviour with considerably less

computational expense (Xu & Liang, 2021). Hybrid KGML methods

have also been used for hypothesis generation and establishing causal

relationships between system drivers and responses (Tsai

et al., 2020).

Numerous combinations of LSTM models and their variants with

different process models have been shown to improve predictive
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performance for streamflow and river and lake water quality including

out-of-bounds predictions in comparison to base process or LSTM

models (Frame et al., 2021; Hanson et al., 2020; Jia, Zwart,

et al., 2021; Konapala et al., 2020; Read et al., 2017). For example, Jia

et al. (2021) used a modified graph-based LSTM that included repre-

sentations of the river network hydrography, pre-trained with output

F IGURE 2 Overview of knowledge-guided machine learning (ML) approaches incorporating physical constraints into the loss function of a
long-short term memory (LSTM) network used to model stream temperatures. The loss function penalizes the ML model for errors in predicting
stream temperature (yPRED = model-predicted stream temperature; yTRUE = observed stream temperature) and stream thermal energy (U), the
latter of which cannot be created or destroyed from one time step to the next according to thermodynamics. Energy fluxes can be transformed or
transported into (fin) or out of (Fout) the stream system according to equations in the process-based model. R(W) represents a standard
complexity regularization on the model parameters weighted by λ, and LossPHY aims to ensure consistency with physics by balancing the energy
fluxes and is weighted by γ. Figure modified from Willard et al. (2022) and https://www.usgs.gov/media/images/diagram-channel-cross-section-
subsections

F IGURE 1 Bayesian optimization approaches using surrogate models such as Gaussian process and radial basis functions enable faster
convergence to the optimal set of hyperparameters for deep learning models used to predict groundwater levels (figure modified from Müller
et al., 2020)

VARADHARAJAN ET AL. 7 of 22
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from a process-based model PRMS-SNTemp (Sanders et al., 2017) to

predict daily stream temperatures across the Delaware River Basin.

This study demonstrated that the hybrid model was able to out-

perform base LSTM models in terms of prediction accuracies and the

ability to extrapolate when data were sparse (Figure 3).

Other KGML approaches include variations of GP, a supervised

ML technique that mimics biological evolution. The advantages of GP

include its ability to produce explicit mathematical relationships

between input and output variables, add constraints based on physical

realistic possibilities, and generate interpretable results. Genetic pro-

gramming has been used extensively in hydrology to build interpret-

able rainfall-runoff, groundwater, and water quality models; estimate

evapotranspiration; and extract information about reservoir opera-

tions (Danandeh Mehr et al., 2018; Fallah-Mehdipour &

Haddad, 2015; Herath et al., 2021). KGML versions of GP models

include a tree-adjoining grammer (TAG) formalism for representing

dynamic processes that has been demonstrated for predictions of

phytoplankton biomass in rivers (Park et al., 2021).

3.3 | How can ML be used to make generalizable
predictions with sparse data?

Water quality data tend to be sparse (Section 4.4), and there is a need

to transfer models from data-rich, small-scale monitored sites to other

regions in a manner that accounts for the spatial heterogeneity of

watershed characteristics. Recent studies have demonstrated the use

of LSTM and ensemble XGBoost models for predictions of streamflow

and stream temperature in unmonitored basins (Kratzert, Klotz,

Herrnegger, et al., 2019; Rahmani, Shen, et al., 2021). Another ML

approach to generalize models is Transfer Learning (Weiss et al., 2016),

which translates models built on highly observed locations to other

sites that are data-sparse or unmonitored, although the challenge lies in

choosing which models to transfer to a given site. Recently, meta trans-

fer learning (MTL) has been proposed as a means to address this prob-

lem, wherein multiple base models (ML or site-specific process model)

can be trained or calibrated for different tasks such as prediction at a

given location, and then a meta-learning model (de Oliviera, 2019;

F IGURE 3 (a) Comparison of pure

machine learning (ML) approaches using
artificial neural networks (ANN) to various
process inclusions (time and space
awareness, pre-training with a process
model) for predicting stream temperature
in the Delaware River basin (data from Jia
et al., 2021). The error bars in panel a
represent the standard deviation of test
root mean squared error (RMSE) across
five model runs. Panel (b) shows model
performance comparison between a
neural network with time awareness
(i.e., long short-term memory network;
long short term memory (LSTM); left) and
a hybrid graph neural network (recurrent
graph convolutional network; RGCN;
right) with time and space awareness in
addition to being pre-trained with a
process model. Models shown in panel
(b) were trained using 0.1% of available
data during the training period and only
segments with more than five
observations during the test period are
shown (data from Jia et al., 2021)
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Vanschoren, 2019) predicts which base model to transfer based on past

performance metrics and location-specific attributes (Willard, Read,

et al., 2020). For example, Willard, Read et al. (2020) used MTL for pre-

dictions of lake temperature in 305 artificially defined “unmonitored”
lakes (targets) by transferring process-based and hybrid KGML models

calibrated for 145 data-rich lakes (sources) using past performance

metrics of the source models along with features such as lake attributes

(e.g., surface area, maximum depth), meteorological statistics, and

source lake temperature statistics. MTL flexibly allows the use of any

type of model built on well-observed locations making it a noteworthy

candidate for increased regional scaling.

3.4 | Can ML methods be adapted to predict
extreme values?

Typical ML methods have inbuilt assumptions (e.g., the random vari-

ables follow a Gaussian distribution), which can lead to poor estimates

when they do not apply for some datasets. In particular, the choice of

a loss functions can directly affect the results (Bishop, 2006). For

example, a squared loss (L2 norm) is more sensitive to outliers than

absolute value loss (L1 norm; Breiman & Friedman, 1985; Hastie

et al., 2009; Zhang, 2007). When outliers are equally important as in

the case of extreme events, it is not uncommon to utilize the probabil-

ity distribution within the loss function (Cawley et al., 2007;

Hsieh, 2009) or choose alternate loss functions such as the relative

entropy loss that computes the distance between two distributions

(Qi & Majda, 2020).

Many studies in hydrology have attempted to improve predic-

tions of extremes such as floods (Mosavi et al., 2018) using multiple

techniques that include using different criteria for model selection

(Coulibaly et al., 2001), conditional density estimation networks

(Cannon, 2012), training exclusively on extreme events such as histor-

ical high-flow data (Fleming et al., 2015), adjustment of ML prediction

bias to improve performance on the tails of the distribution (Belitz &

Stackelberg, 2021), and using KGML models, for example by training

an ML model on simulation data containing extremes that might not

exist in the observation data (Read et al., 2017; Xie et al., 2021). How-

ever, in some cases KGML models may perform worse than traditional

DL models; for example, Frame et al. (2021) found that an LSTM con-

strained to conserve mass was not able to predict peak flows as well

as the base LSTM, although both models had lower errors than the

process-based model used for comparison. Although these examples

show the potential for using ML for predictions of extreme values,

data scarcity for rare events warrants consideration in model choice

and design, and alternate ML methods may need to be used

(or modified) to handle extreme values (Cannon, 2010).

3.5 | How do we represent complex, hierarchical
data in ML models?

The heterogeneity and multi-scale nature of water quality processes

and their drivers requires representation of high-dimensional complex

data in ML models, but this can be challenging to do in a computation-

ally tractable manner. One approach that has been used is to modify

ML models to embed complex spatial information for time-series pre-

dictions. For example, Kratzert et al., (2019) developed an entity

aware-LSTM to include information on static catchment attributes

into the input gate of an LSTM to improve streamflow predictions

across 531 pristine basins. Jia et al. (2021) used a recurrent graph con-

volution network to include spatial information on river segments into

the predictions, and in a subsequent study developed a real-time

active learning approach that used spatial and temporal information to

select representative samples for optimizing model training (Jia, Lin,

et al., 2021). Creating advanced multi-scale graph-based data repre-

sentations that represent river network structure and carry a diverse

set of node and edge attributes can enable embedding multimodal,

multi-scale, and multi-temporal information, and correlate structures

across different scales and time-steps.

Probabilistic graph models (PGMs), which are data structures for

encoding probability distributions, can also be used to include such

structural information (Koller & Friedman, 2009). In a PGM, the nodes

of the graph represent random variables, and the edges represent

dependencies between variables. An optimization process using a

PGM involves defining an energy function, which can embed contex-

tual information about the data, i.e., relationships among data points

at different resolutions, scales, or time steps (prior knowledge). PGMs

can be optimized by targeting the maximization of the joint probability

(or the minimization of the energy function) of the graph (Laude

et al., 2018), which would result in specific river network predictions.

Although classes of PGMs (e.g., Bayesian network models) have been

used for water quality applications (Section 2), newer models that

integrate PGM with DL such as DBN have been used for water quality

predictions (Solanki et al., 2015; Yan et al., 2020).

3.6 | How do we build trustworthy and
interpretable ML models?

Domain experts often are hesitant to replace process-based models

with ML on the grounds that the explainability, interpretability, and

trustworthiness of ML frameworks are questionable even if predic-

tions are more accurate (Rudin, 2019). Model transparency and inter-

pretability is especially important for water management decisions

that have important societal implications and that have to consider

future unknown scenarios.

Recent advances in explainable AI such as local interpretable

model-agnostic explanation (LIME; Ribeiro et al., 2016) or Shapley

additive explanations based on occlusion analysis (SHAP; Lundberg &

Lee, 2017) can explain individual predictions by many ML models

(Samek et al., 2021). Both methods have been successfully

implemented for explaining predictions in rainfall-runoff modelling

(Althoff et al., 2021; Yang & Chui, 2021), and are applicable for water

quality applications as well (Wang et al., 2021). Also in the rainfall-

runoff domain, Kratzert et al. (2019) used integrated gradients

(Sundararajan et al., 2017) to confirm a theory-consistent influence of

precipitation and air temperature on a NN state that correlated with
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snow water equivalent, building trust in the ability of such models to

capture known physical processes. More recent work on the same

subject used probes (e.g., linear regression models or stacked multi-

layer perceptrons) to connect LSTM cell states to the output for track-

ing the evolution of the LSTM during the training process and verify-

ing whether the LSTM learned physically realistic mappings from

inputs to outputs (Lees et al., 2021).

Causal inference is another approach to extract information on

complex water quality processes and infer the effect of one variable

on other system responses (Pearl, 2009; Sugihara et al., 2012). Causal

inference methods can be grouped into three categories: (1) algorithms

based on conditional independence constraints such as Granger cau-

sality (Granger, 1969), transfer entropy (Schreiber, 2000), PC algo-

rithm (Spirtes & Glymour, 1991), fast causal inference (FCI; Spirtes

et al., 2001), PC mutual condition information (PCMCI; Runge

et al., 2019), (2) methods based on time-delay embedding and chaos

theories such as convergent cross mapping (CCM) (Hannart

et al., 2016; Sugihara et al., 2012), and (3) approaches based on coun-

terfactual causal theory and structural causal models (Hoyer

et al., 2009; Pearl, 2009; Peters et al., 2017). These methods have

been adopted in climate and hydrologic sciences (Arora et al., 2019;

Hannart et al., 2016; Ombadi et al., 2020; Runge et al., 2019) to

extract relationships among system variables and disentangle

governing parameters to inform process-based or ML models

(e.g., Figure 4).

3.7 | How do we quantify the uncertainties in
model predictions?

An important aspect of modelling is uncertainty quantification (UQ),

which in ML models includes uncertainties in the data, selection of

input features, and model design (Abdar et al., 2021). A common

approach to test the robustness of models to inputs is to perform vari-

able feature selection and calculate model errors resulting from

choosing different combinations of inputs. Other UQ approaches

include Bayesian methods such as Markov chain Monte Carlo, Bayes-

ian active learning, and variational auto encoders and ensemble

methods, which can be computationally expensive (Abdar

et al., 2021).

Additional UQ challenges to be addressed are the variability of

model performance from tuning hyperparameters due to stochastic

optimizers used for training (model uncertainty) and use of noisy mea-

surement data (measurement uncertainty). An approach to address

F IGURE 4 Graphical illustration of the use of causal inference methods (highlighted in boxes) for hydrological applications: (a) conceptual
understanding of a physical system (i.e., rainfall-runoff process; hydrologic bucket model), (b) observational time series of the four system
variables in panel a, (c) a broad class of causal inference algorithms are based on conditional independence constraints such as Granger
(Granger, 1969), transfer entropy (Schreiber, 2000), PC algorithm (Spirtes & Glymour, 1991), fast causal inference; FCI (Spirtes & Glymour, 2000),
and PCMCI (Runge et al., 2019). Conditional independence is performed using a statistical inference engine (e.g., partial correlation or information
theory), (d) an alternative paradigm of causal inference are methods based on time-delay embedding whereby pairwise-bivariate timeseries (e.g., R
and S) are used to construct attractors from which causal relations can be assessed (Sugihara et al., 2012), (e) the causal network obtained from
causal inference algorithms where nodes represent variables and edges represent causal relations. The obtained causal inference network can be
compared and contrasted to the conceptual a priori understanding of the system shown in panel a
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model uncertainty is to use Monte Carlo dropout in model training,

wherein each node has a certain probability of being dropped out

(dropout rate) and not contributing to the model (Gal &

Ghahramani, 2016). Measurement noise should ideally be propagated

through the model, but computing required probability densities ana-

lytically is possible only for specific types of activation functions

(Gast & Roth, 2018; Loquercio et al., 2020). Uncertainty quantification

methods that exploit and extend such approaches to obtain confi-

dence intervals for predictions are needed (Dumont et al., 2021).

3.8 | How do we integrate and assimilate relevant
datasets into ML models?

Water quality models rely on having access to high-quality, publicly

accessible data, and on software tools that enable data integration

and assimilation. Many ML studies use readily available off-the-shelf

products such as the catchment attributes and meteorology for large-

sample studies (CAMELS; Addor et al., 2017), which may impair their

extensibility to practical, realistic applications where such data may

not be available. Assimilation of new data into models using methods

such as ensemble Kalman filters and autoregression (Brajard

et al., 2020; Nearing, Klotz, et al., 2021; Zwart et al., 2021), and the

use of integrated datasets tailored for the problem can improve pre-

diction outcomes. Software that synthesize data for on-demand

queries such as brokering-based tools (Horsburgh et al., 2016;

Varadharajan et al., 2022), and methods to streamline quality control

and outlier detection, gap-fill, downscale observations, and determine

parameters for process models (Bennett & Nijssen, 2021; Campbell

et al., 2013; Hill & Minsker, 2010; Leigh et al., 2019; Mital

et al., 2020; Russo et al., 2020) would ideally be integrated into ML

workflows in parallel with advances in modelling approaches.

4 | CONSIDERATIONS FOR THE USE OF
ML IN WATER QUALITY MODELS

Water quality modelling poses several challenges regardless of

whether the approach involves ML, statistical, or process-based

codes. While each approach has its strengths and limitations, the ulti-

mate model choice, structure, inputs, and parameters would need to

take into account the following considerations.

4.1 | Process complexity

River water quality involves a wide range of physical

(e.g., temperature, turbidity, conductance), chemical (inorganic and

organic), and biological (e.g., bacteria, phytoplankton) parameters.

Each parameter can be affected by many natural and anthropogenic

factors including solute transport through runoff, groundwater

exchange, instream biogeochemical processes, and land use (Lintern,

Webb, Ryu, Liu, Bende-Michl, et al., 2018). For example, water

temperature is strongly driven by climate but can also be influenced

by snowmelt, groundwater influx, and reservoir and power plant oper-

ations (Caissie, 2006). Biogeochemical transformations such as redox

reactions, uptake of nitrogen, or respiration of dissolved organic car-

bon add process complexity for non-conservative constituents. Even

relatively conserved species such as salts can be affected by processes

such as road salt runoff, surface-groundwater interactions, and tidal

influence in coastal zones (Kaushal et al., 2018). Disturbances can

modify the extent to which different drivers control water quality –

e.g., drought increases groundwater influences on salinity and in-

stream biotic influences on nutrient transformation rates

(Mosley, 2015). The need for explicit representation of different pro-

cesses and their feedbacks in mechanistic models has resulted in

increasingly complex model structures, and larger parameter spaces

that are more difficult to constrain (Rode et al., 2010). ML approaches

present an alternative to process models for complex systems where

the dynamics are not fully understood, if sufficient data are available

through direct or proxy measurements. However, ML and especially

DL models with large sets of hyperparameters can also be complex

depending on many factors such as model design, optimization pro-

cess, and data dimensionality (Hu et al., 2021). An important aspect of

choosing a model is determining the right level of model complexity

required for the decisions to be made. Adding model complexity does

not necessarily improve performance, and will increase computational

and data requirements (Orth et al., 2015; Rode et al., 2010). Ideally,

the choice of a more complex model (e.g., a DL-based architecture) is

justified by comparing performance against some baseline lower-

complexity ML, statistical, or process models (e.g., multi-linear regres-

sion or persistence models).

4.2 | Scale, heterogeneity, and generalizability

The factors influencing riverine water quality can differ in space and

time ranging from local-scale surface groundwater fluxes and hypo-

rheic exchange (Sear et al., 1999), reach-scale habitat and riparian veg-

etation (Newcomer et al., 2021), watershed-scale geomorphology and

geology (Burns et al., 2020; Varanka et al., 2015), to regional-scale cli-

mate and land use patterns (Guo et al., 2019; Lintern, Webb, Ryu, Liu,

Waters, et al., 2018). Building models that translate across spatiotem-

poral scales and incorporate process understanding of heterogeneous

drivers is a significant challenge. Typically models have tried to cap-

ture catchment heterogeneity using characterizations of representa-

tive field sites from intense, multidisciplinary field investigations

(Brantley et al., 2017) or other (e.g., remote sensing) datasets. How-

ever, upscaling mechanistic understanding from data-rich small-scale

testbeds to other regions has been challenging, in part due to the spa-

tial heterogeneity of watershed characteristics and the need to have

computationally tractable models (Tang et al., 2019). Although param-

eter regionalization and classification of process-based models by

catchment have attempted regional scaling with mixed results

(Archfield et al., 2015), new approaches to bridge scales for key water

quality variables using ML are needed. Although ML models are
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typically scale-invariant, their implementation for predictions of a par-

ticular spatial and temporal scale may require different model archi-

tectures and inputs depending on the processes involved at each

scale. Recent hydrological studies explored the use of ML across spa-

tial scales (Gauch et al., 2021; Kratzert, Klotz, Herrnegger,

et al., 2019), and approaches such as transfer learning (Section 3.3)

can also be used to address this challenge. Finally, the effects of

human activity or natural disturbances can persist over long time-

scales (sometimes decades) requiring some models to include the

lagged effects of drivers. For systems where memory effects are sig-

nificant, ML models that use lagged variables or architectures that

support prior states (e.g., LSTM or other sequence models) are

warranted.

4.3 | Desired accuracy and computational
complexity

A key consideration for model choice is the extent of accuracy and

robustness needed to meet the stakeholder objectives (Section 4.5).

For example, daily reservoir operations have a much lower tolerance

for errors in streamflow and temperature predictions in comparison to

longer-term planning for climate change (Culhane et al., 1987). There

are tradeoffs to be made between model accuracy, complexity, and

computational costs. For example, classical ML models can be trained

with substantially lower computational expense and smaller datasets

(Hu et al., 2021), and are more interpretable (Rudin, 2019). Deep NN

can have lower prediction errors, but have many more parameters

than classical ML models thus requiring larger datasets and more com-

putational resources to train, and are more difficult to interpret (Hu

et al., 2021; Reichstein et al., 2019).

4.4 | Data availability, integration, processing and
representation in models

Riverine water quality modelling typically requires the use of highly

diverse multi-scale, multimodal data (e.g., time-series data of flow and

solute concentrations, geospatial data such as soil layers and hydrog-

raphy, remote sensing data, or products of land cover and land use)

for parameterization and validation. Model data requirements depend

on the complexity, desired scale and resolution, and can be specific to

the management question at hand. The amount of data available

needs to be considered in choosing the ML model, with classical ML

approaches needing less data than DL models. Hybrid KGML models

(Section 3.2) and MTL (Section 3.3) can also be better suited for situa-

tions with sparse data.

A challenge for water quality modelling is that data are typically

sparse because many relevant parameters are measured infrequently

using laboratory characterization of manually collected samples, and

can be biased due to sampling network design, flow conditions, and

time of day when the samples were collected (Smith et al., 1997;

Zhang et al., 2019). In-situ sensor technologies that collect high-

resolution data only span a limited range of physical and chemical var-

iables (Kruse, 2018), although soft sensor surrogate modelling

approaches can be used to generate estimates of variables that are

not measured (Section 2). While spatially dense remote sensing obser-

vations can be difficult to obtain at sufficiently fine resolutions, there

are opportunities to bridge spatial scales by integrating limited point

measurements from monitoring networks with remote sensing esti-

mates of water quality (Ross et al., 2019; Topp et al., 2020). Autono-

mous observations from instruments such as aquatic drones guided

by ML (Castellini et al., 2019, 2020) is a future direction that could

enable data collection at larger scales.

Discovering, integrating, and processing data for models is also

challenging. Typically data of interest are spread across a myriad of

sources in different formats, and do not have sufficient metadata,

quality, or provenance information to support integration (Larsen

et al., 2016). Often co-located datasets on water quality and its

drivers are either not available or not easily discoverable. Data also

may need to be gap-filled and quality checked prior to use in a model.

In particular, water bodies with strong human influence are extremely

difficult to model and upscale because predictor datasets on activities

such as point source discharge, water withdrawals, and reservoir

releases are limited or not easily reusable. Thus many observations

are underutilized for ML despite large-scale consolidation efforts such

as the Water Quality Portal and GLORICH databases (Hartmann

et al., 2014; Read et al., 2017), because it is labor-intensive to harmo-

nize and process data (Shaughnessy et al., 2019; Sprague et al., 2017).

Recent efforts to make water data more broadly available and usable

such as the U.S. Open Water Data Initiative and the California open

water data system are essential for effective management and deci-

sion making (Blodgett et al., 2015; Cantor et al., 2021; Larsen

et al., 2016). Because data preparation is one of the most time-

consuming aspects of model development, the development of bench-

mark datasets following FAIR (Findable, Accessible, Reusable, Interop-

erable) principles (Wilkinson et al., 2016), and the use of automated

tools that make it easier to discover, synthesize, and assimilate data

(e.g., Section 3.8) can accelerate adoption of ML approaches.

4.5 | Data-driven decisions considering
stakeholder objectives

Data-driven decision making refers to the concept of making deci-

sions based on data analysis or modelling, and the use of ML for mak-

ing optimal decisions has been proposed for numerous applications

such as business intelligence, healthcare, network optimization, and

precision agriculture (Chen, Liu, & Peng, 2019; Liakos et al., 2018; Ma

et al., 2020; Provost & Fawcett, 2013). Water management is a com-

plex endeavour, and managers are tasked with making decisions at

local (e.g., temperature and salinity control in a reach) to regional

(e.g., integrated river basin management) spatial scales. The lead times

needed for different decisions can be very different (DeFlorio

et al., 2021; Sene, 2016) ranging from months to years for long-term

planning (e.g., capital investments, climate adaptation), weeks to

12 of 22 VARADHARAJAN ET AL.

 10991085, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14565 by E

pfl L
ibrary B

ibliothèque, W
iley O

nline L
ibrary on [05/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



months for seasonal water supply management (e.g., drought and

snowmelt forecasting), and hours to weeks for tactical operations and

emergency response (e.g., daily reservoir operations, spill mitigation).

Water quality management can be especially challenging given the

range of variables that are typically regulated (e.g., temperature, salts,

oxygen, nutrients, metals, organics) and the diffuse nature of their

sources and sinks. Models used for water quality management serve

exploratory, planning, or regulatory purposes, which have different

requirements for acceptable accuracies, uncertainties, and biases

(Harmel et al., 2014).

Ultimately, it is important to consider stakeholder needs and

available resources in deciding the appropriate complexity, scale, and

resolution of the models. For example, many ML models have been

developed for operational decisions that have short lead times

(e.g., near-term forecasting), and are typically focused on predictions

of a single variable although multitask learning approaches are being

explored (e.g., Sadler et al., 2022; Zhu & Piotrowski, 2020; Zwart

et al., 2021). ML models can also be run with substantially less compu-

tational expense than process models, and thus can be used to

explore different scenarios for decision-making. Early stakeholder

engagement can help determine desired objectives, accuracies, and

lead times (Castilla-Rho, 2017; White, 2017), which could be enabled

through collaborations between hydrological/water quality experts

and data scientists with stakeholders such as watershed managers,

regulators, and the public (Sun & Scanlon, 2019). Additionally, incor-

porating explainable AI approaches into decision frameworks will be

important to increase transparency and build stakeholder trust in

model projections. Finally, there are ethical considerations regarding

the use of ML for decision-making, which include examining algorith-

mic assumptions, data bias and quality, and human-derived decision

rules (Lo Piano, 2020).

In summary, ML paired with other emerging technologies such as

cloud and exascale computing, 5G networks, and big data tools has

the potential to significantly advance data-driven decisions and

knowledge discovery for watershed and water quality management

(Hubbard et al., 2020; Sun & Scanlon, 2019). The field of ML, and

more broadly AI, has had a long history of developing other relevant

technologies that are not discussed here including intelligent agents,

decision theory, and reinforcement learning, which warrant further

consideration in data-driven decision support systems for watershed

management (Russell & Norvig, 2020). The potential for improving

water quality models using ML can be realized by making deliberate

choices for model selection, design, and evaluation based on the

above considerations and incorporating the latest computational and

mathematical advances.

5 | CONCLUSIONS

Improving water quality models for timely, decision-relevant predic-

tions would be beneficial in the face of climate and land use change,

growing populations, and a greater likelihood of extreme events.

Water quality modelling poses many challenges due to the diversity of

parameters and processes involved, the need for scaling, and data

availability. The rapid growth in use of the state-of-the-art ML and DL

models in hydrology, and recent computational and mathematical

advances have demonstrated the potential for using ML for water

quality modelling. Models can be improved using new approaches for

model selection, hyperparameter optimization, knowledge-guided ML,

transfer learning, new representations for complex data, explicit treat-

ment for extremes, UQ, and explainable AI methods. At the same

time, development of tools to integrate and process observational

datasets, and methods for data assimilation would enhance the use of

ML for water quality modelling. For decision-relevant predictions,

consideration of stakeholder needs in model selection and evaluation

of trade-offs between desired accuracy, complexity, timeliness, and

available data and computational resources are important. With

thoughtful implementation, ML models have the potential to acceler-

ate decision-relevant predictions and process understanding of river

water quality.
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